matplotlib.scale¶
Scales define the distribution of data values on an axis, e.g. a log scaling.
They are attached to an Axis and hold a Transform, which is
responsible for the actual data transformation.
See also axes.Axes.set_xscale and the scales examples in the documentation.
-
class
matplotlib.scale.FuncScale(axis, functions)[source]¶ Bases:
matplotlib.scale.ScaleBaseProvide an arbitrary scale with user-supplied function for the axis.
Parameters: - axis
Axis The axis for the scale.
- functions(callable, callable)
two-tuple of the forward and inverse functions for the scale. The forward function must be monotonic.
Both functions must have the signature:
def forward(values: array-like) -> array-like
-
get_transform()[source]¶ Return the
FuncTransformassociated with this scale.
-
name= 'function'¶
- axis
-
class
matplotlib.scale.FuncScaleLog(axis, functions, base=10)[source]¶ Bases:
matplotlib.scale.LogScaleProvide an arbitrary scale with user-supplied function for the axis and then put on a logarithmic axes.
Parameters: - axis
matplotlib.axis.Axis The axis for the scale.
- functions(callable, callable)
two-tuple of the forward and inverse functions for the scale. The forward function must be monotonic.
Both functions must have the signature:
def forward(values: array-like) -> array-like
- basefloat, default: 10
Logarithmic base of the scale.
-
property
base¶
-
name= 'functionlog'¶
- axis
-
class
matplotlib.scale.FuncTransform(forward, inverse)[source]¶ Bases:
matplotlib.transforms.TransformA simple transform that takes and arbitrary function for the forward and inverse transform.
Parameters: - forwardcallable
The forward function for the transform. This function must have an inverse and, for best behavior, be monotonic. It must have the signature:
def forward(values: array-like) -> array-like
- inversecallable
The inverse of the forward function. Signature as
forward.
-
has_inverse= True¶
-
input_dims= 1¶
-
inverted()[source]¶ Return the corresponding inverse transformation.
It holds
x == self.inverted().transform(self.transform(x)).The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
-
is_separable= True¶
-
output_dims= 1¶
-
transform_non_affine(values)[source]¶ Apply only the non-affine part of this transformation.
transform(values)is always equivalent totransform_affine(transform_non_affine(values)).In non-affine transformations, this is generally equivalent to
transform(values). In affine transformations, this is always a no-op.Parameters: - valuesarray
The input values as NumPy array of length
input_dimsor shape (N xinput_dims).
Returns: - array
The output values as NumPy array of length
input_dimsor shape (N xoutput_dims), depending on the input.
-
class
matplotlib.scale.InvertedLogTransform(base)[source]¶ Bases:
matplotlib.transforms.TransformParameters: - shorthand_namestr
A string representing the "name" of the transform. The name carries no significance other than to improve the readability of
str(transform)when DEBUG=True.
-
has_inverse= True¶
-
input_dims= 1¶
-
inverted()[source]¶ Return the corresponding inverse transformation.
It holds
x == self.inverted().transform(self.transform(x)).The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
-
is_separable= True¶
-
output_dims= 1¶
-
transform_non_affine(a)[source]¶ Apply only the non-affine part of this transformation.
transform(values)is always equivalent totransform_affine(transform_non_affine(values)).In non-affine transformations, this is generally equivalent to
transform(values). In affine transformations, this is always a no-op.Parameters: - valuesarray
The input values as NumPy array of length
input_dimsor shape (N xinput_dims).
Returns: - array
The output values as NumPy array of length
input_dimsor shape (N xoutput_dims), depending on the input.
-
class
matplotlib.scale.InvertedSymmetricalLogTransform(base, linthresh, linscale)[source]¶ Bases:
matplotlib.transforms.TransformParameters: - shorthand_namestr
A string representing the "name" of the transform. The name carries no significance other than to improve the readability of
str(transform)when DEBUG=True.
-
has_inverse= True¶
-
input_dims= 1¶
-
inverted()[source]¶ Return the corresponding inverse transformation.
It holds
x == self.inverted().transform(self.transform(x)).The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
-
is_separable= True¶
-
output_dims= 1¶
-
transform_non_affine(a)[source]¶ Apply only the non-affine part of this transformation.
transform(values)is always equivalent totransform_affine(transform_non_affine(values)).In non-affine transformations, this is generally equivalent to
transform(values). In affine transformations, this is always a no-op.Parameters: - valuesarray
The input values as NumPy array of length
input_dimsor shape (N xinput_dims).
Returns: - array
The output values as NumPy array of length
input_dimsor shape (N xoutput_dims), depending on the input.
-
class
matplotlib.scale.LinearScale(axis, **kwargs)[source]¶ Bases:
matplotlib.scale.ScaleBaseThe default linear scale.
-
get_transform()[source]¶ Return the transform for linear scaling, which is just the
IdentityTransform.
-
name= 'linear'¶
-
-
class
matplotlib.scale.LogScale(axis, **kwargs)[source]¶ Bases:
matplotlib.scale.ScaleBaseA standard logarithmic scale. Care is taken to only plot positive values.
Parameters: - axis
Axis The axis for the scale.
- basefloat, default: 10
The base of the logarithm.
- nonpositive{'clip', 'mask'}, default: 'clip'
Determines the behavior for non-positive values. They can either be masked as invalid, or clipped to a very small positive number.
- subssequence of int, default: None
Where to place the subticks between each major tick. For example, in a log10 scale,
[2, 3, 4, 5, 6, 7, 8, 9]will place 8 logarithmically spaced minor ticks between each major tick.
-
property
InvertedLogTransform¶
-
property
LogTransform¶
-
property
base¶
-
get_transform()[source]¶ Return the
LogTransformassociated with this scale.
-
name= 'log'¶
- axis
-
class
matplotlib.scale.LogTransform(**kwargs)[source]¶ Bases:
matplotlib.transforms.TransformParameters: - shorthand_namestr
A string representing the "name" of the transform. The name carries no significance other than to improve the readability of
str(transform)when DEBUG=True.
-
has_inverse= True¶
-
input_dims= 1¶
-
inverted()[source]¶ Return the corresponding inverse transformation.
It holds
x == self.inverted().transform(self.transform(x)).The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
-
is_separable= True¶
-
output_dims= 1¶
-
transform_non_affine(a)[source]¶ Apply only the non-affine part of this transformation.
transform(values)is always equivalent totransform_affine(transform_non_affine(values)).In non-affine transformations, this is generally equivalent to
transform(values). In affine transformations, this is always a no-op.Parameters: - valuesarray
The input values as NumPy array of length
input_dimsor shape (N xinput_dims).
Returns: - array
The output values as NumPy array of length
input_dimsor shape (N xoutput_dims), depending on the input.
-
class
matplotlib.scale.LogisticTransform(**kwargs)[source]¶ Bases:
matplotlib.transforms.TransformParameters: - shorthand_namestr
A string representing the "name" of the transform. The name carries no significance other than to improve the readability of
str(transform)when DEBUG=True.
-
has_inverse= True¶
-
input_dims= 1¶
-
inverted()[source]¶ Return the corresponding inverse transformation.
It holds
x == self.inverted().transform(self.transform(x)).The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
-
is_separable= True¶
-
output_dims= 1¶
-
class
matplotlib.scale.LogitScale(**kwargs)[source]¶ Bases:
matplotlib.scale.ScaleBaseLogit scale for data between zero and one, both excluded.
This scale is similar to a log scale close to zero and to one, and almost linear around 0.5. It maps the interval ]0, 1[ onto ]-infty, +infty[.
Parameters: - axis
matplotlib.axis.Axis Currently unused.
- nonpositive{'mask', 'clip'}
Determines the behavior for values beyond the open interval ]0, 1[. They can either be masked as invalid, or clipped to a number very close to 0 or 1.
- use_overlinebool, default: False
Indicate the usage of survival notation (overline{x}) in place of standard notation (1-x) for probability close to one.
- one_halfstr, default: r"frac{1}{2}"
The string used for ticks formatter to represent 1/2.
-
get_transform()[source]¶ Return the
LogitTransformassociated with this scale.
-
limit_range_for_scale(vmin, vmax, minpos)[source]¶ Limit the domain to values between 0 and 1 (excluded).
-
name= 'logit'¶
- axis
-
class
matplotlib.scale.LogitTransform(**kwargs)[source]¶ Bases:
matplotlib.transforms.TransformParameters: - shorthand_namestr
A string representing the "name" of the transform. The name carries no significance other than to improve the readability of
str(transform)when DEBUG=True.
-
has_inverse= True¶
-
input_dims= 1¶
-
inverted()[source]¶ Return the corresponding inverse transformation.
It holds
x == self.inverted().transform(self.transform(x)).The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
-
is_separable= True¶
-
output_dims= 1¶
-
class
matplotlib.scale.ScaleBase(axis, **kwargs)[source]¶ Bases:
objectThe base class for all scales.
Scales are separable transformations, working on a single dimension.
Any subclasses will want to override:
And optionally:
Construct a new scale.
Notes
The following note is for scale implementors.
For back-compatibility reasons, scales take an
Axisobject as first argument. However, this argument should not be used: a single scale object should be usable by multipleAxises at the same time.
-
class
matplotlib.scale.SymmetricalLogScale(axis, **kwargs)[source]¶ Bases:
matplotlib.scale.ScaleBaseThe symmetrical logarithmic scale is logarithmic in both the positive and negative directions from the origin.
Since the values close to zero tend toward infinity, there is a need to have a range around zero that is linear. The parameter linthresh allows the user to specify the size of this range (-linthresh, linthresh).
Parameters: - basefloat, default: 10
The base of the logarithm.
- linthreshfloat, default: 2
Defines the range
(-x, x), within which the plot is linear. This avoids having the plot go to infinity around zero.- subssequence of int
Where to place the subticks between each major tick. For example, in a log10 scale:
[2, 3, 4, 5, 6, 7, 8, 9]will place 8 logarithmically spaced minor ticks between each major tick.- linscalefloat, optional
This allows the linear range
(-linthresh, linthresh)to be stretched relative to the logarithmic range. Its value is the number of decades to use for each half of the linear range. For example, when linscale == 1.0 (the default), the space used for the positive and negative halves of the linear range will be equal to one decade in the logarithmic range.
Construct a new scale.
Notes
The following note is for scale implementors.
For back-compatibility reasons, scales take an
Axisobject as first argument. However, this argument should not be used: a single scale object should be usable by multipleAxises at the same time.-
property
InvertedSymmetricalLogTransform¶
-
property
SymmetricalLogTransform¶
-
property
base¶
-
get_transform()[source]¶ Return the
SymmetricalLogTransformassociated with this scale.
-
property
linscale¶
-
property
linthresh¶
-
name= 'symlog'¶
-
class
matplotlib.scale.SymmetricalLogTransform(base, linthresh, linscale)[source]¶ Bases:
matplotlib.transforms.TransformParameters: - shorthand_namestr
A string representing the "name" of the transform. The name carries no significance other than to improve the readability of
str(transform)when DEBUG=True.
-
has_inverse= True¶
-
input_dims= 1¶
-
inverted()[source]¶ Return the corresponding inverse transformation.
It holds
x == self.inverted().transform(self.transform(x)).The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
-
is_separable= True¶
-
output_dims= 1¶
-
transform_non_affine(a)[source]¶ Apply only the non-affine part of this transformation.
transform(values)is always equivalent totransform_affine(transform_non_affine(values)).In non-affine transformations, this is generally equivalent to
transform(values). In affine transformations, this is always a no-op.Parameters: - valuesarray
The input values as NumPy array of length
input_dimsor shape (N xinput_dims).
Returns: - array
The output values as NumPy array of length
input_dimsor shape (N xoutput_dims), depending on the input.
-
matplotlib.scale.register_scale(scale_class)[source]¶ Register a new kind of scale.
Parameters: - scale_classsubclass of
ScaleBase The scale to register.
- scale_classsubclass of
-
matplotlib.scale.scale_factory(scale, axis, **kwargs)[source]¶ Return a scale class by name.
Parameters: - scale{'function', 'functionlog', 'linear', 'log', 'logit', 'symlog'}
- axis
matplotlib.axis.Axis