Modern Python analysis ecosystem for High Energy Physics

Jim Pivarski, Matthew Feickert, Gordon Watts

Princeton University, University of Wisconsin-Madison, University of Washington

The Python Exchange for DOE Employees
June 29th, 2022

1/25

Hello from IRIS-HEP and Scikit-HEP!

» We're members of the Institute for
Research and Innovation in Software
for High Energy Physics (IRIS-HEP)
and the Scikit-HEP community
project developing a Pythonic data
analysis ecosystem for HEP

» Goals: Empower analysts with
modern data science stacks and
provide powerful libraries for building
expressive workflows

Scikit
HEP

2/25

https://iris-hep.org/
https://iris-hep.org/
https://iris-hep.org/
https://scikit-hep.org/
https://iris-hep.org/
https://scikit-hep.org/

Rapid rise of Python for analysis in HEP

Source:

500

Number of repos matching, quarterly
5
o

-
o
o

“import XYZ" matches in GitHub repos for users who fork CMSSW.

w
o
o

N
o
o

total (all CMS user GitHub repos)
with C++ files total -
with Python files (not CMSSW)
with CMSSW configuration

with Python in Jupyter

with C++ in Jupyter e . A
W T ‘\‘)‘-

2012 2013 2014 2015 2016 2017 2018 2019 2020

(CMSSW is the CMS experiment’s “offline” software framework)

2021

3/25

Explosion of Scientific Python (NumPy, etc.) use recent since 2018

Source: “import XYZ" matches in GitHub repos for users who fork CMSSW.

2501 —— ROOT (C++ and Python)

—== PyROOT (Python only)

----- CMSSW configuration

— humpy ROOT
22004 ~~- matplotlib | Scientific
g —-- pandas Python
S | tensorflow
5 —— uproot
o
E 150 awkward !
= 1
© 1
£ I~ Python
§ I (CMSSW config)
100 P
o
9]
Q
€
3
=2

50 4
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

4/25

Growth tightly coupled to the rise of Scikit-HEP supported by IRIS-HEP

Source: “pip install XYZ" download rate for MacOS/Windows (no batch jobs).

102

10t

Number of pip-installs per month

100

2017 2018 2019 2020 2021 2022
5/25

Growth tightly coupled to the rise of Scikit-HEP supported by IRIS-HEP

Source: “pip install

XYZ" download rate for MacOS/Windows (no batch jobs).

104

103

102

10t

Number of pip-installs per month

|

I

1
e iaiml

T

g

awkward
uproot
uproot-methods.
boost-histogram
mplhep

hist

histoprint

hepunits
root-numpy

resample
root-pandas.
probit

pyiet
decaylanguage
hepstats
formulate
vegascope
numpythia
coffea

pylhe
histbook
pyhepmc
fastjet

goofit

aghast
fast-carpenter
cabinetry
reana
hepaccelerate
pybumphunter

6/25

In his PyCon 2017 keynote, Jake VanderPlas gave us the iconic “PyData ecosystem” image

(and
many,

b 4
K @ Net wurk,\'.

S ong, B -
T g e WA - t’f’ scikit-image

o
’ NumPy Jupyter
S’

IPython . @qthon
v @ python 2

DASK

7/25

https://youtu.be/ZyjCqQEUa8o
https://coiled.io/blog/pydata-dask/

Pythonic ecosystem for particle physics

Working view of a PyHEP ecosystem (Scikit-HEP and IRIS-HEP supported projects)

gepey

Boost_&«
istogram

i/

numpythia

histoprint -

/
Gl
HEP

E=cabinetry

pylhe
ﬁproot

Jupyter matpl&tlib

DASK @ python’

==y |

UPEO0TEROWSER
F&STIET

nndrone

hepst

hepunits

iminuit

9Numba \ £ Tlt

8/25

https://hepsoftwarefoundation.org/workinggroups/pyhep.html
https://indico.cern.ch/event/1140031/

Built with intentionality and interoperability

e . . /

5 HEP-specific Ul applications or 5 /3@
: Eonéuage Scikit

packaged algorithms mumpythia HEP

pyhepmc

FSTIET

nndrone

4 HEP-specific for common

problems p.y:if : %

kelihoods

3 HEP-specific, foundational VE I Wi

hepunits

2 needed to create, but not really

Vega Cmﬁj'

H E P_SpeCIfIC ‘\:S,c‘ope g e
[mBOOS - Y X ==Numpy @tlb imin].iit
istogram IUBYES matpl&tli :
1 non-HEP software we depend on J 7/ DASK =~ & python P s

9/25

https://indico.cern.ch/event/1140031/

Case study: convergence of histogram libraries

The Scientific Python world lacked HEP-style histograms; it's one of the things we
have to make ourselves.

10/25

Case study: convergence of histogram libraries

The Scientific Python world lacked HEP-style histograms; it's one of the things we
have to make ourselves.

Also, it seems easy: just bin and count, right?

10/25

Case study: convergence of histogram libraries

The Scientific Python world lacked HEP-style histograms; it's one of the things we
have to make ourselves.

Also, it seems easy: just bin and count, right?

Physicists have created at least 20 histogram libraries in Python, most single-author.

PyROOT (2004—now)
PAIDA (2004-2007)
Plothon (2007-2008)
SVGFig (2008-2009)
YODA (2008—now)

DANSE (2009-2011)
rootpy (2011-2019)
SimpleHist (2011-2015)
pyhistogram (2015)
multihist (2015—-now)

matplotlib-hep (2016)
QHist (2017-2019)

> Coffea.hist (2019-2022)
>
Physt (2016—now) » mplhep (2019—now)
>
>

boost-histogram (2019-now)

Histogrammar (2016—now) histoprint (2020—-now)

hist (2020—now)

vVvyVvVvyyvyy
vVvyVyVvyy
vvyyvyyvYyy

HistBook (2018-2019)

10/25

Histogram proliferation and convergence

Number of unique developers contributing to each library per month (in git).

12

109 —--

monthly number of unique committers, smoothed 8 months
o
1
1

ROOT histograms

YODA
Plothon
SVGFig

rootpy histograms

SimpleHist . .
pyhistogram in HEP: when many histogram

multihist

matplotlib-hep

QHist
Physt

Histogrammar

HistBook
Coffea

Boost/hist/mplhep

B

\
istogram part of ROOT

mainstream Python adoption

libraries lived and died

A
g§8 A
s /)
S 3 1
O 8 AN I\

Q 7o
Q| \\’I

.2’ Q !

<

YODA

0
2007

(395 C++ files) il
< [pie¥ oaram ‘histograms
s YODA s
et N TCoffeas, .
2009 2011 2021

11/25

Why combine Boost::Histogram, hist, mplhep?

Boost::Histogram

\thi:wrapper

boost-histogram

plotting in
Matplotlib

mplhep

\fuiy featured

hist

plotting in
terminal

histoprint

Originally, each of these was developed

independently by a single author.

12/25

Why combine Boost::Histogram, hist, mplhep?

Boost::Histogram

\thi:wrapper

boost-histogram

plotting in
Matplotlib

mplhep

\fuiy featured

hist

plotting in
terminal

histoprint

Originally, each of these was developed
independently by a single author.

They each provide a piece of
functionality users can get through

import hist

12/25

Why combine Boost::Histogram, hist, mplhep?

Boost::Histogram

\thi:wrapper

boost-histogram

plotting in
Matplotlib

mplhep

\fuiy featured

hist

plotting in
terminal

histoprint

Originally, each of these was developed
independently by a single author.

They each provide a piece of
functionality users can get through

import hist

Now, 47 developers have contributed
to these packages, and 20 contributed
to more than one.

12/25

Consistency maintained through agreed-upon protocols

uhi 0.3.1
documentation

Search the docs ..

UHI: Unified Histogram Interface

CONTENTS:
Indexing
Indexing+

Plotting

Help for plotters

The module uhi.numpy_plottable has a utility to simplify the common use case of accepting
a PlottableProtocol or other common formats, primarily a NumPy
histogram/histogram2d/histogramdd tuple. The ensure_plottable_histogram function will
take a histogram or NumPy tuple, or an object that implements . to_numpy() or .numpy() and
convert it to a NumPyPlottableHistogram, which is a minimal implementation of the Protocol.
By calling this function on your input, you can then write your plotting function knowing that
col object, greatly simplifying your code.

you always have a PlottablePro

The full protocol version 1.2 follows:
(Also available as uhi.typing.plottable.PlottableProtocol, for use in tests, etc.

Using the protocol:

Producers: use isinstance(myhist, PlottableHistogram) in your tests; part of
the protocol is checkable at runtime, though ideally you should use MyPy; if
your histogram class supports PlottableHistogram, this will pass.

Consumers: Make your functions accept the PlottableHistogram static type, and
MyPy will force you to only use items in the Protocol.

i= Contents

Using the protocol.
Implementing the protocol:
Help for plotters

The full protocol version 1.2 follows:

13/25

Another need: arrays of non-tabular data

Almost all HEP data consists of variable-length lists and nested objects, which
would be easiest to describe as JSON (though inefficient). To make use of
NumPy-centric tools, we need a way of accessing such data in a NumPy-like way.

14/25

Another need: arrays of non-tabular data

Almost all HEP data consists of variable-length lists and nested objects, which
would be easiest to describe as JSON (though inefficient). To make use of
NumPy-centric tools, we need a way of accessing such data in a NumPy-like way.
array = ak.Array([
[{"x": 1.1, "y"s [113, {"x": 2.2, "y": [1, 2]}, {"x": 3.3, "y": [1, 2, 3]1}],

(1,
[{"x": 4.4, "y": [1, 2, 3, 41}, {"x": 5.5, "v": [1, 2, 3, 4, 5]}]

D

14/25

Another need: arrays of non-tabular data

Almost all HEP data consists of variable-length lists and nested objects, which
would be easiest to describe as JSON (though inefficient). To make use of
NumPy-centric tools, we need a way of accessing such data in a NumPy-like way.

array = ak.Array([
O L D03 00 22, 0 T 20 (00 303, 0 T 2, 5,
[{','x": 4.4, "y": [1, 2, 3, 4]}, {"x": 5.5, "y": [1, 2, 3, 4, 5]}]
D
NumPy-like expression
output = np.square(array["y", ..., 1:])

output.to_list()

> [41, [4, 911,

[[]
(1,
[[4, 9, 161, [4, 9, 16, 25]]

14/25

Another need: arrays of non-tabular data

Almost all HEP data consists of variable-length lists and nested objects, which
would be easiest to describe as JSON (though inefficient). To make use of
NumPy-centric tools, we need a way of accessing such data in a NumPy-like way.

array = ak. Array([
L 1, s D O 222, 0 D 200 (033, e 2, 1),
[{','x": 4.4, "y": [1, 2, 3, 4]}, {"x": 5.5, "y": [1, 2, 3, 4, 5]}]

D
NumPy-like expression equivalent Python
output = np.square(array["y", ..., 1:]1) output = []
for sublist in python_objects:
output.to_list() tmpl = []
for record in sublist:
[[1, [41, [4, 911, tmp2 = []
[1, for number in record["y"][1:]:
[[4, 9, 161, [4, 9, 16, 25]] tmp2.append(np.square(number))
] tmpl.append(tmp2)

output.append(tmpl)
14 /25

Scikit-HEP is feature-complete for modern analysis

I
LHCb Publication Using Solely Scikit-HEP Tools
LHCb collaboration has
published JHEP 01

Post data-processing all performed with Python HEP tools!

(2022) 166 using onIy o Uproot: Interfacing with input @ iminuit: User-friendly interface
. ROOT files to minuit2 to process
Scikit-HEP tools for the @ boost-histogram: Replace minimization
analysis classic TH* ROOT classes; @ PDF build in Python using
Bonus: Multi-dimensional SciPy library components
histograms! 14000

ey ey €(35,4.0)
€20.25) _gimdaton _N€125.30) _gmdaton _NE€13.0.35) _simylation 12000 e tidas, 2188 Mev s

Scikit-HEP packages S
cover all aspects of
analysis and working with
IRIS-HEP to spread

adoption

10000 fit: background
i data

8000

6000

candidates / (0.8 MeV/c?)
IS
H
8
g

2000

Y100 1110 1120 1130 1140 1150
m(n"p) [MeV/c?]

» LHCb-PAPER-2021-010

LHCb Python HEP Analysis Feedback 26-04-2022 5/17

priMevic]

15/25

https://inspirehep.net/literature/1889335
https://inspirehep.net/literature/1889335
https://indico.cern.ch/event/1126109/contributions/4780169/

IRIS-HEP grand challenges test interactions between services and tools

Data Organization, _ Scalable Systems Laboratory
Management and grcl’il-lslysw Systems (AS): (SSL): deployment techniques
Access (DOMA): and resources
Data delivery T
By ouzrooenveons R
?- Data Store/Lake HTTP-T:;fHuW Ezcabinetry
i FTS o pel
13 Delixllr:;"'sg::fic[;a(:gog IDDS ..4—.?
Data Cache wCach @
Wl oogn
ServiceX
\ ; Service) YGache
3 ’.9 B
NI ISl
Hee g ot

16/25

Optimizing Data Delivery

Ps g;" =
| i imi hysics analysis
detector centralized event centrally managed one data fetch private skimin physi y

reconstruction dataset (AOD) (written in C++) mini-framework begins

Requires large intermediate files
* Disk space is one of the most constrained resource for
the HL-LHC’s next run.
* Common formats are less inadequate as Deep Learning
becomes more and more prevalent
Runs can take days to weeks to complete
* Wasted analyzer time
* Inability to quickly try new ideas (time-to-insight)
Everyone writes their own version of this (“ntuplizer”)
* Wasted Collaboration Effort

17/25

Optimizing Data Delivery

to replace

detector centralized event centrally managed one data fetch private skim in physics analysis

reconstruction dataset (AOD) (written in C++) mini-framework begins
LS
detector S2Nt! lized event presented as frequent data pHAysics analysis
(reconstruction dataset (AOD) a queryable service fetches On query results

18/25

Optimizing Data Delivery

ServiceX e et f4——————

4

Code Generator Data Finder

G User builds a query for the system

* Original Source Data
* Z — ee dataset !
* What columns of the data should ‘
be extracted :
* Electron pr,n, ¢ ‘ ‘ ‘ ‘ ‘ ‘
* Filtering of the data is specified H
* pr>5GeV,|n| <24 ‘ H H ‘
« Derived output quantiles specified H
eyt I

* Missing Ep ‘

Results Database

(om0
Any Data

19/25

Optimizing Data Delivery

ServiceX

° System Finds the Data & Builds Code

* Location of Original Source Data is
discovered
* URLs for files via http
* Files served via the rootd
protocol
* Source data can translate to
many files (1000’s)
* Query language is translated into
source code
* Pyhon
o C++
* Anything really — depends on
what consumes it in the next
step

Web REST Interface

Code Generator Data Finder

4

L 4

Results Database

(om0
Any Data

20/25

Optimizing Data Delivery

ServiceX e et f4——————

: ‘ c"-' python
° Input data is transformed into W

requested output data
Code Generator Data Finder

¢ Up to some preset limit, a

processes is spun up for every file ‘
* Aslong as bandwidth is there, it 1

run 100's of files in parallel, ‘
reading from the list of sources
the Data Finder pulled in ‘

(om0
Any Data

o |t | s
| 4

Results Database

21/25

Optimizing Data Delivery

Web REST Interface

4

ServiceX

a Results are cached internally in S3-
like database

Code Generator Data Finder —
)) ~
¢ S3isan object store (AWS H
protocol)

I
* Cached locally for some amount of ‘
time — can be re-queired ‘ ‘ ‘ ‘ ‘ ‘ '

* Since request is unique — can
always calculate hash of it and find
it in the database

* Same user making same
request repeatedly

* Data streamed to DASK or single
process

(om0
Any Data

e
| 4

Results Database

PB Of data — GB of data \ /

22/25

Optimizing Data Delivery

Thoughts Around This Effort

Queue 9c6a4600-dedf-4490-b06d-a32c1c048b85

We wrote Very Little Code of our own! | learned ‘\
some object lessons... [

1. We should stop thinking about how we solve {
the problem. First ask — has someone else e
solved it?

2. Stop thinking about single-computer, single-
process solutions — our data is big enough —
time to think outside our knowledge base

3. Itis not about what | can write — it is about the

ecosystem
* And taking advantage of everything out 1))
there

Testing on 10 TB xAOD input sample.

* Requested 100 columns from 7 collections (~30% of file)
* Scale up to 1,000 workers the River SSL Cluster

* Results in less than 30 minutes.

« OQutput rate was in excess of 300MB/s.

* Most efficient: collaborate with someone that
knows the ecosystem and the tools
* We stole: Kubernets, RabbitMQ, SQL,
Postgress, minio, etc.

23/25

Conclusions: Modern Pythonic analysis in HEP is happening now

A confluence of scientific tools and scientists has lead to a
feature-complete Scikit-HEP in the last 5 years

The Scikit-HEP project
The idea, in just one sentence \IEP

The Scikit-HEP project (http://scikit-hep.org/) is a community-driven and community-oriented
project with the aim of providing Particle Physics at large with a Python package containing core
and common tools.

What it is NOT ...
Q A replacement for ROOT

Q A replacement for the Python ecosystem based on NumPy, scikit-learn & co.

... and what IT IS

Q Bridgelglue between the ROOT-based and the Python scientific ecosystem
- Expand typical toolkit of HEP physicists
- Common definitions and APIs to ease “cross-talk”

Q Project similar to the Astropy project - learn from good examples ;-) Ed ua rd O RO d r | g ues

Q We are building a community, engaging with (future) collaborators in various experiments

Eduardo Rodrigues HSF Workshop, Amsterdam, The Netherlands, 23 May 20

24/25

https://indico.cern.ch/event/613842/contributions/2591057/

Conclusions: Modern Pythonic analysis in HEP is happening now

Growing PyHEP ecosystem is enabling analysts in HEP to explore
and reduce the time to insight

D /@

Eonauﬁge Scikit
numpythia HEP

pyhepmc

FHSTIET

nndrone

Ve 1 &R

hepunits

histoprint

lhﬂ'B“s“‘“ 1
istogram
7/DASK °

Q).

@ python” &Numba

25/25

https://indico.cern.ch/event/1140031/

