
Modern Python analysis ecosystem for High Energy Physics

Jim Pivarski, Matthew Feickert, Gordon Watts

Princeton University, University of Wisconsin-Madison, University of Washington

The Python Exchange for DOE Employees
June 29th, 2022

1 / 25



Hello from IRIS-HEP and Scikit-HEP!

I We’re members of the Institute for
Research and Innovation in Software
for High Energy Physics (IRIS-HEP)
and the Scikit-HEP community
project developing a Pythonic data
analysis ecosystem for HEP

I Goals: Empower analysts with
modern data science stacks and
provide powerful libraries for building
expressive workflows

2 / 25

https://iris-hep.org/
https://iris-hep.org/
https://iris-hep.org/
https://scikit-hep.org/
https://iris-hep.org/
https://scikit-hep.org/


Rapid rise of Python for analysis in HEP
Source: “import XYZ” matches in GitHub repos for users who fork CMSSW.

Python (scrip
ts)

Python (Ju
pyter)

C++

total

Python
(CMSSW config)

(CMSSW is the CMS experiment’s “offline” software framework)
3 / 25



Explosion of Scientific Python (NumPy, etc.) use recent since 2018

Source: “import XYZ” matches in GitHub repos for users who fork CMSSW.

Use
 o

f S
cie

ntifi
c P

yth
on in

 H
EP

ROOT
Scientific
Python

PyROOT

Python
(CMSSW config)

4 / 25



Growth tightly coupled to the rise of Scikit-HEP supported by IRIS-HEP
Source: “pip install XYZ” download rate for MacOS/Windows (no batch jobs).

50×

5 / 25



Growth tightly coupled to the rise of Scikit-HEP supported by IRIS-HEP
Source: “pip install XYZ” download rate for MacOS/Windows (no batch jobs).

50×

6 / 25



Ecosystems

In his PyCon 2017 keynote, Jake VanderPlas gave us the iconic “PyData ecosystem” image

7 / 25

https://youtu.be/ZyjCqQEUa8o
https://coiled.io/blog/pydata-dask/


Pythonic ecosystem for particle physics

Working view of a PyHEP ecosystem (Scikit-HEP and IRIS-HEP supported projects)

numpythia

hepunits

histoprint

uhi

pyhepmc

pylhe

nndrone

 

8 / 25

https://hepsoftwarefoundation.org/workinggroups/pyhep.html
https://indico.cern.ch/event/1140031/


Built with intentionality and interoperability

5 HEP-specific UI applications or
packaged algorithms

4 HEP-specific for common
problems

3 HEP-specific, foundational

2 needed to create, but not really
HEP-specific

1 non-HEP software we depend on

numpythia

hepunits

histoprint

uhi

pyhepmc

pylhe

nndrone

 

9 / 25

https://indico.cern.ch/event/1140031/


Case study: convergence of histogram libraries

The Scientific Python world lacked HEP-style histograms; it’s one of the things we
have to make ourselves.

Also, it seems easy: just bin and count, right?

Physicists have created at least 20 histogram libraries in Python, most single-author.

I PyROOT (2004–now)
I PAIDA (2004–2007)
I Plothon (2007–2008)
I SVGFig (2008–2009)
I YODA (2008–now)

I DANSE (2009–2011)
I rootpy (2011–2019)
I SimpleHist (2011–2015)
I pyhistogram (2015)
I multihist (2015–now)

I matplotlib-hep (2016)
I QHist (2017–2019)
I Physt (2016–now)
I Histogrammar (2016–now)
I HistBook (2018–2019)

I Coffea.hist (2019–2022)
I boost-histogram (2019–now)
I mplhep (2019–now)
I histoprint (2020–now)
I hist (2020–now)

10 / 25



Case study: convergence of histogram libraries

The Scientific Python world lacked HEP-style histograms; it’s one of the things we
have to make ourselves.

Also, it seems easy: just bin and count, right?

Physicists have created at least 20 histogram libraries in Python, most single-author.

I PyROOT (2004–now)
I PAIDA (2004–2007)
I Plothon (2007–2008)
I SVGFig (2008–2009)
I YODA (2008–now)

I DANSE (2009–2011)
I rootpy (2011–2019)
I SimpleHist (2011–2015)
I pyhistogram (2015)
I multihist (2015–now)

I matplotlib-hep (2016)
I QHist (2017–2019)
I Physt (2016–now)
I Histogrammar (2016–now)
I HistBook (2018–2019)

I Coffea.hist (2019–2022)
I boost-histogram (2019–now)
I mplhep (2019–now)
I histoprint (2020–now)
I hist (2020–now)

10 / 25



Case study: convergence of histogram libraries

The Scientific Python world lacked HEP-style histograms; it’s one of the things we
have to make ourselves.

Also, it seems easy: just bin and count, right?

Physicists have created at least 20 histogram libraries in Python, most single-author.

I PyROOT (2004–now)
I PAIDA (2004–2007)
I Plothon (2007–2008)
I SVGFig (2008–2009)
I YODA (2008–now)

I DANSE (2009–2011)
I rootpy (2011–2019)
I SimpleHist (2011–2015)
I pyhistogram (2015)
I multihist (2015–now)

I matplotlib-hep (2016)
I QHist (2017–2019)
I Physt (2016–now)
I Histogrammar (2016–now)
I HistBook (2018–2019)

I Coffea.hist (2019–2022)
I boost-histogram (2019–now)
I mplhep (2019–now)
I histoprint (2020–now)
I hist (2020–now)

10 / 25



Histogram proliferation and convergence

Number of unique developers contributing to each library per month (in git).

YODA

YODA
histograms
in Coffea

B
o
o
st

::
H

is
to

g
ra

m
,

h
is

t,
 m

p
lh

e
p
 c

o
m

b
o

ROOT

mainstream Python adoption
in HEP: when many histogram

libraries lived and died

histograms
in rootpy

histogram part of ROOT
(395 C++ files)

11 / 25



Why combine Boost::Histogram, hist, mplhep?

Boost::Histogram

boost-histogram

hist

mplhep

histoprint

thin wrapper

fully featured

plotting in
Matplotlib

plotting in
terminal

Originally, each of these was developed
independently by a single author.

They each provide a piece of
functionality users can get through
import hist

Now, 47 developers have contributed
to these packages, and 20 contributed
to more than one.

12 / 25



Why combine Boost::Histogram, hist, mplhep?

Boost::Histogram

boost-histogram

hist

mplhep

histoprint

thin wrapper

fully featured

plotting in
Matplotlib

plotting in
terminal

Originally, each of these was developed
independently by a single author.

They each provide a piece of
functionality users can get through
import hist

Now, 47 developers have contributed
to these packages, and 20 contributed
to more than one.

12 / 25



Why combine Boost::Histogram, hist, mplhep?

Boost::Histogram

boost-histogram

hist

mplhep

histoprint

thin wrapper

fully featured

plotting in
Matplotlib

plotting in
terminal

Originally, each of these was developed
independently by a single author.

They each provide a piece of
functionality users can get through
import hist

Now, 47 developers have contributed
to these packages, and 20 contributed
to more than one.

12 / 25



Consistency maintained through agreed-upon protocols

13 / 25



Another need: arrays of non-tabular data
Almost all HEP data consists of variable-length lists and nested objects, which
would be easiest to describe as JSON (though inefficient). To make use of
NumPy-centric tools, we need a way of accessing such data in a NumPy-like way.

14 / 25



Another need: arrays of non-tabular data
Almost all HEP data consists of variable-length lists and nested objects, which
would be easiest to describe as JSON (though inefficient). To make use of
NumPy-centric tools, we need a way of accessing such data in a NumPy-like way.

array = ak.Array([
 [{"x": 1.1, "y": [1]}, {"x": 2.2, "y": [1, 2]}, {"x": 3.3, "y": [1, 2, 3]}],
 [],
 [{"x": 4.4, "y": [1, 2, 3, 4]}, {"x": 5.5, "y": [1, 2, 3, 4, 5]}]
])

14 / 25



Another need: arrays of non-tabular data
Almost all HEP data consists of variable-length lists and nested objects, which
would be easiest to describe as JSON (though inefficient). To make use of
NumPy-centric tools, we need a way of accessing such data in a NumPy-like way.

array = ak.Array([
 [{"x": 1.1, "y": [1]}, {"x": 2.2, "y": [1, 2]}, {"x": 3.3, "y": [1, 2, 3]}],
 [],
 [{"x": 4.4, "y": [1, 2, 3, 4]}, {"x": 5.5, "y": [1, 2, 3, 4, 5]}]
])

NumPy-like expression

output = np.square(array["y", ..., 1:])

[
 [[], [4], [4, 9]],
 [],
 [[4, 9, 16], [4, 9, 16, 25]]
]

output.to_list()

14 / 25



Another need: arrays of non-tabular data
Almost all HEP data consists of variable-length lists and nested objects, which
would be easiest to describe as JSON (though inefficient). To make use of
NumPy-centric tools, we need a way of accessing such data in a NumPy-like way.

output = []
for sublist in python_objects:
 tmp1 = []
 for record in sublist:
 tmp2 = []
 for number in record["y"][1:]:
 tmp2.append(np.square(number))
 tmp1.append(tmp2)
 output.append(tmp1)

array = ak.Array([
 [{"x": 1.1, "y": [1]}, {"x": 2.2, "y": [1, 2]}, {"x": 3.3, "y": [1, 2, 3]}],
 [],
 [{"x": 4.4, "y": [1, 2, 3, 4]}, {"x": 5.5, "y": [1, 2, 3, 4, 5]}]
])

NumPy-like expression

output = np.square(array["y", ..., 1:])

[
 [[], [4], [4, 9]],
 [],
 [[4, 9, 16], [4, 9, 16, 25]]
]

output.to_list()

equivalent Python

14 / 25



Scikit-HEP is feature-complete for modern analysis

LHCb collaboration has
published JHEP 01
(2022) 166 using only
Scikit-HEP tools for the
analysis

Scikit-HEP packages
cover all aspects of
analysis and working with
IRIS-HEP to spread
adoption

15 / 25

https://inspirehep.net/literature/1889335
https://inspirehep.net/literature/1889335
https://indico.cern.ch/event/1126109/contributions/4780169/


IRIS-HEP grand challenges test interactions between services and tools

16 / 25



Optimizing Data Delivery

17 / 25



Optimizing Data Delivery

18 / 25



Optimizing Data Delivery

ServiceX Web REST Interface

Code Generator

Transformer Transformer Transformer

Transformer Transformer Transformer

Transformer Transformer Transformer

Results Database

Data Finder

(GRID)

Any Data

1

1

User builds a query for the system

• Original Source Data
• 𝑍 → 𝑒𝑒 dataset

• What columns of the data should
be extracted
• Electron 𝑝𝑇 , 𝜂, 𝜙

• Filtering of the data is specified
• 𝑝𝑇 > 5 GeV, 𝜂 < 2.4

• Derived output quantiles specified
• Electron 𝑝𝑇 , 𝜂, 𝜙
• Missing 𝐸𝑇

19 / 25



Optimizing Data Delivery

ServiceX Web REST Interface

Code Generator

Transformer Transformer Transformer

Transformer Transformer Transformer

Transformer Transformer Transformer

Results Database

Data Finder

(GRID)

Any Data

2
2

System Finds the Data & Builds Code

• Location of Original Source Data is 
discovered
• URL’s for files via http
• Files served via the rootd

protocol
• Source data can translate to

many files (1000’s)
• Query language is translated into

source code
• Pyhon
• C++
• Anything really – depends on

what consumes it in the next 
step

20 / 25



Optimizing Data Delivery

ServiceX Web REST Interface

Code Generator

Transformer Transformer Transformer

Transformer Transformer Transformer

Transformer Transformer Transformer

Results Database

Data Finder

(GRID)

Any Data

3

3

Input data is transformed into 
requested output data

• Up to some preset limit, a 
processes is spun up for every file

• As long as bandwidth is there, it
run 100’s of files in parallel, 
reading from the list of sources 
the Data Finder pulled in

21 / 25



Optimizing Data Delivery

ServiceX Web REST Interface

Code Generator

Transformer Transformer Transformer

Transformer Transformer Transformer

Transformer Transformer Transformer

Results Database

Data Finder

(GRID)

Any Data

4

4

Results are cached internally in S3-
like database

• S3 is an object store (AWS 
protocol)

• Cached locally for some amount of 
time – can be re-queired

• Since request is unique – can
always calculate hash of it and find
it in the database
• Same user making same 

request repeatedly
• Data streamed to DASK or single

process

PB Of data → GB of data

22 / 25



Optimizing Data Delivery

Thoughts Around This Effort

Testing on 10 TB xAOD input sample.
• Requested 100 columns from 7 collections (~30% of file)
• Scale up to 1,000 workers the River SSL Cluster
• Results in less than 30 minutes.
• Output rate was in excess of 300MB/s.

We wrote Very Little Code of our own! I learned 
some object lessons…

1. We should stop thinking about how we solve 
the problem. First ask – has someone else 
solved it?

2. Stop thinking about single-computer, single-
process solutions – our data is big enough –
time to think outside our knowledge base

3. It is not about what I can write – it is about the
ecosystem
• And taking advantage of everything out 

there
• Most efficient: collaborate with someone that

knows the ecosystem and the tools
• We stole: Kubernets, RabbitMQ, SQL,

Postgress, minio, etc.

23 / 25



Conclusions: Modern Pythonic analysis in HEP is happening now
A confluence of scientific tools and scientists has lead to a

feature-complete Scikit-HEP in the last 5 years

Eduardo Rodrigues
24 / 25

https://indico.cern.ch/event/613842/contributions/2591057/


Conclusions: Modern Pythonic analysis in HEP is happening now
Growing PyHEP ecosystem is enabling analysts in HEP to explore

and reduce the time to insight

numpythia

hepunits

histoprint

uhi

pyhepmc

pylhe

nndrone

 

25 / 25

https://indico.cern.ch/event/1140031/

