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Hello from IRIS-HEP and Scikit-HEP!

» We're members of the Institute for
Research and Innovation in Software
for High Energy Physics (IRIS-HEP)
and the Scikit-HEP community
project developing a Pythonic data
analysis ecosystem for HEP

» Goals: Empower analysts with
modern data science stacks and
provide powerful libraries for building
expressive workflows

Scikit
HEP
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https://iris-hep.org/
https://iris-hep.org/
https://iris-hep.org/
https://scikit-hep.org/
https://iris-hep.org/
https://scikit-hep.org/

Rapid rise of Python for analysis in HEP

Source:
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Explosion of Scientific Python (NumPy, etc.) use recent since 2018

Source: “import XYZ" matches in GitHub repos for users who fork CMSSW.
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Growth tightly coupled to the rise of Scikit-HEP supported by IRIS-HEP

Source: “pip install XYZ" download rate for MacOS/Windows (no batch jobs).
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Growth tightly coupled to the rise of Scikit-HEP supported by IRIS-HEP

Source: “pip install

XYZ" download rate for MacOS/Windows (no batch jobs).
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In his PyCon 2017 keynote, Jake VanderPlas gave us the iconic “PyData ecosystem” image
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https://youtu.be/ZyjCqQEUa8o
https://coiled.io/blog/pydata-dask/

Pythonic ecosystem for particle physics

Working view of a PyHEP ecosystem (Scikit-HEP and IRIS-HEP supported projects)
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https://hepsoftwarefoundation.org/workinggroups/pyhep.html
https://indico.cern.ch/event/1140031/

Built with intentionality and interoperability
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https://indico.cern.ch/event/1140031/

Case study: convergence of histogram libraries

The Scientific Python world lacked HEP-style histograms; it's one of the things we
have to make ourselves.
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Case study: convergence of histogram libraries

The Scientific Python world lacked HEP-style histograms; it's one of the things we
have to make ourselves.

Also, it seems easy: just bin and count, right?

Physicists have created at least 20 histogram libraries in Python, most single-author.

PyROOT (2004—now)
PAIDA (2004-2007)
Plothon (2007-2008)
SVGFig (2008-2009)
YODA (2008—now)

DANSE (2009-2011)
rootpy (2011-2019)
SimpleHist (2011-2015)
pyhistogram (2015)
multihist (2015—-now)

matplotlib-hep (2016)
QHist (2017-2019)

> Coffea.hist (2019-2022)
>
Physt (2016—now) » mplhep (2019—now)
>
>

boost-histogram (2019-now)

Histogrammar (2016—now) histoprint (2020—-now)

hist (2020—now)

vVvyVvVvyyvyy
vVvyVyVvyy
vvyyvyyvYyy

HistBook (2018-2019)
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Histogram proliferation and convergence

Number of unique developers contributing to each library per month (in git).
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Why combine Boost::Histogram, hist, mplhep?

Boost::Histogram

\thi:wrapper

boost-histogram

plotting in
Matplotlib

mplhep

\fuiy featured

hist

plotting in
terminal

histoprint

Originally, each of these was developed

independently by a single author.
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Why combine Boost::Histogram, hist, mplhep?

Boost::Histogram

\thi:wrapper

boost-histogram

plotting in
Matplotlib

mplhep

\fuiy featured

hist

plotting in
terminal

histoprint

Originally, each of these was developed
independently by a single author.

They each provide a piece of
functionality users can get through

import hist

Now, 47 developers have contributed
to these packages, and 20 contributed
to more than one.
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Consistency maintained through agreed-upon protocols

uhi 0.3.1
documentation

Search the docs ..

UHI: Unified Histogram Interface

CONTENTS:
Indexing
Indexing+

Plotting

Help for plotters

The module uhi.numpy_plottable has a utility to simplify the common use case of accepting
a PlottableProtocol or other common formats, primarily a NumPy
histogram/histogram2d/histogramdd tuple. The ensure_plottable_histogram function will
take a histogram or NumPy tuple, or an object that implements . to_numpy() or .numpy() and
convert it to a NumPyPlottableHistogram, which is a minimal implementation of the Protocol.
By calling this function on your input, you can then write your plotting function knowing that
col object, greatly simplifying your code.

you always have a PlottablePro

The full protocol version 1.2 follows:
(Also available as uhi.typing.plottable.PlottableProtocol, for use in tests, etc.

Using the protocol:

Producers: use isinstance(myhist, PlottableHistogram) in your tests; part of
the protocol is checkable at runtime, though ideally you should use MyPy; if
your histogram class supports PlottableHistogram, this will pass.

Consumers: Make your functions accept the PlottableHistogram static type, and
MyPy will force you to only use items in the Protocol.

i= Contents

Using the protocol.
Implementing the protocol:
Help for plotters

The full protocol version 1.2 follows:
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Another need: arrays of non-tabular data

Almost all HEP data consists of variable-length lists and nested objects, which
would be easiest to describe as JSON (though inefficient). To make use of
NumPy-centric tools, we need a way of accessing such data in a NumPy-like way.
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Another need: arrays of non-tabular data

Almost all HEP data consists of variable-length lists and nested objects, which
would be easiest to describe as JSON (though inefficient). To make use of
NumPy-centric tools, we need a way of accessing such data in a NumPy-like way.
array = ak.Array([
[{"x": 1.1, "y"s [113, {"x": 2.2, "y": [1, 2]}, {"x": 3.3, "y": [1, 2, 3]1}],

(1,
[{"x": 4.4, "y": [1, 2, 3, 41}, {"x": 5.5, "v": [1, 2, 3, 4, 5]}]

D
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Another need: arrays of non-tabular data

Almost all HEP data consists of variable-length lists and nested objects, which
would be easiest to describe as JSON (though inefficient). To make use of
NumPy-centric tools, we need a way of accessing such data in a NumPy-like way.

array = ak.Array([
O L D03 00 22, 0 T 20 (00 303, 0 T 2, 5,
[{','x": 4.4, "y": [1, 2, 3, 4]}, {"x": 5.5, "y": [1, 2, 3, 4, 5]}]
D
NumPy-like expression
output = np.square(array["y", ..., 1:])

output.to_list()

> [41, [4, 911,

[[]
(1,
[[4, 9, 161, [4, 9, 16, 25]]
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Another need: arrays of non-tabular data

Almost all HEP data consists of variable-length lists and nested objects, which
would be easiest to describe as JSON (though inefficient). To make use of
NumPy-centric tools, we need a way of accessing such data in a NumPy-like way.

array = ak. Array([
L 1, s D O 222, 0 D 200 (033, e 2, 1),
[{','x": 4.4, "y": [1, 2, 3, 4]}, {"x": 5.5, "y": [1, 2, 3, 4, 5]}]

D
NumPy-like expression equivalent Python
output = np.square(array["y", ..., 1:]1) output = []
for sublist in python_objects:
output.to_list() tmpl = []
for record in sublist:
[[1, [41, [4, 911, tmp2 = []
[1, for number in record["y"][1:]:
[[4, 9, 161, [4, 9, 16, 25]] tmp2.append(np.square(number))
] tmpl.append(tmp2)

output.append(tmpl)
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Scikit-HEP is feature-complete for modern analysis

I
LHCb Publication Using Solely Scikit-HEP Tools
LHCb collaboration has
published JHEP 01

Post data-processing all performed with Python HEP tools!
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https://inspirehep.net/literature/1889335
https://inspirehep.net/literature/1889335
https://indico.cern.ch/event/1126109/contributions/4780169/

IRIS-HEP grand challenges test interactions between services and tools

Data Organization, _ Scalable Systems Laboratory
Management and grcl’il-lslysw Systems (AS): (SSL): deployment techniques
Access (DOMA): and resources
Data delivery T
By ouzrooenveons R
?- Data Store/Lake HTTP-T:;fHuW Ezcabinetry
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Optimizing Data Delivery

Ps g;" =
| i imi hysics analysis
detector centralized event centrally managed  one data fetch private skimin  physi y

reconstruction dataset (AOD) (written in C++) mini-framework begins

Requires large intermediate files
* Disk space is one of the most constrained resource for
the HL-LHC’s next run.
* Common formats are less inadequate as Deep Learning
becomes more and more prevalent
Runs can take days to weeks to complete
* Wasted analyzer time
* Inability to quickly try new ideas (time-to-insight)
Everyone writes their own version of this (“ntuplizer”)
* Wasted Collaboration Effort

17/25



Optimizing Data Delivery

to replace

detector centralized event centrally managed one data fetch private skim in  physics analysis

reconstruction dataset (AOD) (written in C++) mini-framework begins
LS
detector  S2Nt! lized event presented as frequent data  pHAysics analysis
( reconstruction dataset (AOD) a queryable service fetches On query results
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Optimizing Data Delivery

ServiceX e et f4——————

4

Code Generator Data Finder

G User builds a query for the system

* Original Source Data
* Z — ee dataset !
* What columns of the data should ‘
be extracted :
* Electron pr,n, ¢ ‘ ‘ ‘ ‘ ‘ ‘
* Filtering of the data is specified H
* pr>5GeV,|n| <24 ‘ H H ‘
« Derived output quantiles specified H
eyt I

* Missing Ep ‘

Results Database

(om0
Any Data

19/25



Optimizing Data Delivery

ServiceX

° System Finds the Data & Builds Code

* Location of Original Source Data is
discovered
* URLs for files via http
* Files served via the rootd
protocol
* Source data can translate to
many files (1000’s)
* Query language is translated into
source code
* Pyhon
o C++
* Anything really — depends on
what consumes it in the next
step

Web REST Interface

Code Generator Data Finder

4

L 4

Results Database

(om0
Any Data
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Optimizing Data Delivery

ServiceX e et f4——————

: ‘ c"-' python
° Input data is transformed into W

requested output data
Code Generator Data Finder

¢ Up to some preset limit, a

processes is spun up for every file ‘
* Aslong as bandwidth is there, it 1

run 100's of files in parallel, ‘
reading from the list of sources
the Data Finder pulled in ‘

(om0
Any Data

o |t | s
| 4

Results Database
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Optimizing Data Delivery

Web REST Interface

4

ServiceX

a Results are cached internally in S3-
like database

Code Generator Data Finder —
) ) ~
¢ S3isan object store (AWS H
protocol)

I
* Cached locally for some amount of ‘
time — can be re-queired ‘ ‘ ‘ ‘ ‘ ‘ '

* Since request is unique — can
always calculate hash of it and find
it in the database

* Same user making same
request repeatedly

* Data streamed to DASK or single
process

(om0
Any Data

e
| 4

Results Database

PB Of data — GB of data \ /
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Optimizing Data Delivery

Thoughts Around This Effort

Queue 9c6a4600-dedf-4490-b06d-a32c1c048b85

We wrote Very Little Code of our own! | learned ‘\
some object lessons... [

1. We should stop thinking about how we solve {
the problem. First ask — has someone else e
solved it?

2. Stop thinking about single-computer, single-
process solutions — our data is big enough —
time to think outside our knowledge base

3. Itis not about what | can write — it is about the

ecosystem
* And taking advantage of everything out 1 ) )
there

Testing on 10 TB xAOD input sample.

* Requested 100 columns from 7 collections (~30% of file)
* Scale up to 1,000 workers the River SSL Cluster

* Results in less than 30 minutes.

« OQutput rate was in excess of 300MB/s.

*  Most efficient: collaborate with someone that
knows the ecosystem and the tools
*  We stole: Kubernets, RabbitMQ, SQL,
Postgress, minio, etc.
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Conclusions: Modern Pythonic analysis in HEP is happening now

A confluence of scientific tools and scientists has lead to a
feature-complete Scikit-HEP in the last 5 years

The Scikit-HEP project
The idea, in just one sentence \IEP

The Scikit-HEP project (http://scikit-hep.org/) is a community-driven and community-oriented
project with the aim of providing Particle Physics at large with a Python package containing core
and common tools.

What it is NOT ...
Q A replacement for ROOT

Q A replacement for the Python ecosystem based on NumPy, scikit-learn & co.

... and what IT IS

Q Bridgelglue between the ROOT-based and the Python scientific ecosystem
- Expand typical toolkit of HEP physicists
- Common definitions and APIs to ease “cross-talk”

Q Project similar to the Astropy project - learn from good examples ;-) Ed ua rd O RO d r | g ues

Q We are building a community, engaging with (future) collaborators in various experiments

Eduardo Rodrigues HSF Workshop, Amsterdam, The Netherlands, 23 May 20
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https://indico.cern.ch/event/613842/contributions/2591057/

Conclusions: Modern Pythonic analysis in HEP is happening now

Growing PyHEP ecosystem is enabling analysts in HEP to explore
and reduce the time to insight
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https://indico.cern.ch/event/1140031/

