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Hello from IRIS-HEP and Scikit-HEP!

I We’re members of the Institute for
Research and Innovation in Software
for High Energy Physics (IRIS-HEP)
and the Scikit-HEP community
project developing a Pythonic data
analysis ecosystem for HEP

I Goals: Empower analysts with
modern data science stacks and
provide powerful libraries for building
expressive workflows

2 / 25

https://iris-hep.org/
https://iris-hep.org/
https://iris-hep.org/
https://scikit-hep.org/
https://iris-hep.org/
https://scikit-hep.org/


Rapid rise of Python for analysis in HEP
Source: “import XYZ” matches in GitHub repos for users who fork CMSSW.
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(CMSSW is the CMS experiment’s “offline” software framework)
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Explosion of Scientific Python (NumPy, etc.) use recent since 2018

Source: “import XYZ” matches in GitHub repos for users who fork CMSSW.
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Growth tightly coupled to the rise of Scikit-HEP supported by IRIS-HEP
Source: “pip install XYZ” download rate for MacOS/Windows (no batch jobs).

50×
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Ecosystems

In his PyCon 2017 keynote, Jake VanderPlas gave us the iconic “PyData ecosystem” image
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https://youtu.be/ZyjCqQEUa8o
https://coiled.io/blog/pydata-dask/


Pythonic ecosystem for particle physics

Working view of a PyHEP ecosystem (Scikit-HEP and IRIS-HEP supported projects)
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https://hepsoftwarefoundation.org/workinggroups/pyhep.html
https://indico.cern.ch/event/1140031/


Built with intentionality and interoperability

5 HEP-specific UI applications or
packaged algorithms

4 HEP-specific for common
problems

3 HEP-specific, foundational

2 needed to create, but not really
HEP-specific

1 non-HEP software we depend on

numpythia
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histoprint
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pyhepmc
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https://indico.cern.ch/event/1140031/


Case study: convergence of histogram libraries

The Scientific Python world lacked HEP-style histograms; it’s one of the things we
have to make ourselves.

Also, it seems easy: just bin and count, right?

Physicists have created at least 20 histogram libraries in Python, most single-author.

I PyROOT (2004–now)
I PAIDA (2004–2007)
I Plothon (2007–2008)
I SVGFig (2008–2009)
I YODA (2008–now)

I DANSE (2009–2011)
I rootpy (2011–2019)
I SimpleHist (2011–2015)
I pyhistogram (2015)
I multihist (2015–now)

I matplotlib-hep (2016)
I QHist (2017–2019)
I Physt (2016–now)
I Histogrammar (2016–now)
I HistBook (2018–2019)

I Coffea.hist (2019–2022)
I boost-histogram (2019–now)
I mplhep (2019–now)
I histoprint (2020–now)
I hist (2020–now)
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Histogram proliferation and convergence

Number of unique developers contributing to each library per month (in git).
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Why combine Boost::Histogram, hist, mplhep?

Boost::Histogram

boost-histogram

hist

mplhep

histoprint

thin wrapper

fully featured

plotting in
Matplotlib

plotting in
terminal

Originally, each of these was developed
independently by a single author.

They each provide a piece of
functionality users can get through
import hist

Now, 47 developers have contributed
to these packages, and 20 contributed
to more than one.
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Consistency maintained through agreed-upon protocols
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Another need: arrays of non-tabular data
Almost all HEP data consists of variable-length lists and nested objects, which
would be easiest to describe as JSON (though inefficient). To make use of
NumPy-centric tools, we need a way of accessing such data in a NumPy-like way.
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 [[], [4], [4, 9]],
 [],
 [[4, 9, 16], [4, 9, 16, 25]]
]

output.to_list()
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[
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equivalent Python
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Scikit-HEP is feature-complete for modern analysis

LHCb collaboration has
published JHEP 01
(2022) 166 using only
Scikit-HEP tools for the
analysis

Scikit-HEP packages
cover all aspects of
analysis and working with
IRIS-HEP to spread
adoption

15 / 25

https://inspirehep.net/literature/1889335
https://inspirehep.net/literature/1889335
https://indico.cern.ch/event/1126109/contributions/4780169/


IRIS-HEP grand challenges test interactions between services and tools
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Optimizing Data Delivery
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Optimizing Data Delivery
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Optimizing Data Delivery

ServiceX Web REST Interface

Code Generator

Transformer Transformer Transformer

Transformer Transformer Transformer

Transformer Transformer Transformer

Results Database

Data Finder

(GRID)

Any Data

1

1

User builds a query for the system

• Original Source Data
• 𝑍 → 𝑒𝑒 dataset

• What columns of the data should
be extracted
• Electron 𝑝𝑇 , 𝜂, 𝜙

• Filtering of the data is specified
• 𝑝𝑇 > 5 GeV, 𝜂 < 2.4

• Derived output quantiles specified
• Electron 𝑝𝑇 , 𝜂, 𝜙
• Missing 𝐸𝑇
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Optimizing Data Delivery

ServiceX Web REST Interface

Code Generator

Transformer Transformer Transformer

Transformer Transformer Transformer

Transformer Transformer Transformer

Results Database

Data Finder

(GRID)

Any Data

2
2

System Finds the Data & Builds Code

• Location of Original Source Data is 
discovered
• URL’s for files via http
• Files served via the rootd

protocol
• Source data can translate to

many files (1000’s)
• Query language is translated into

source code
• Pyhon
• C++
• Anything really – depends on

what consumes it in the next 
step
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Optimizing Data Delivery

ServiceX Web REST Interface

Code Generator

Transformer Transformer Transformer

Transformer Transformer Transformer

Transformer Transformer Transformer

Results Database

Data Finder

(GRID)

Any Data

3

3

Input data is transformed into 
requested output data

• Up to some preset limit, a 
processes is spun up for every file

• As long as bandwidth is there, it
run 100’s of files in parallel, 
reading from the list of sources 
the Data Finder pulled in
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Optimizing Data Delivery

ServiceX Web REST Interface

Code Generator

Transformer Transformer Transformer

Transformer Transformer Transformer

Transformer Transformer Transformer

Results Database

Data Finder

(GRID)

Any Data

4

4

Results are cached internally in S3-
like database

• S3 is an object store (AWS 
protocol)

• Cached locally for some amount of 
time – can be re-queired

• Since request is unique – can
always calculate hash of it and find
it in the database
• Same user making same 

request repeatedly
• Data streamed to DASK or single

process

PB Of data → GB of data
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Optimizing Data Delivery

Thoughts Around This Effort

Testing on 10 TB xAOD input sample.
• Requested 100 columns from 7 collections (~30% of file)
• Scale up to 1,000 workers the River SSL Cluster
• Results in less than 30 minutes.
• Output rate was in excess of 300MB/s.

We wrote Very Little Code of our own! I learned 
some object lessons…

1. We should stop thinking about how we solve 
the problem. First ask – has someone else 
solved it?

2. Stop thinking about single-computer, single-
process solutions – our data is big enough –
time to think outside our knowledge base

3. It is not about what I can write – it is about the
ecosystem
• And taking advantage of everything out 

there
• Most efficient: collaborate with someone that

knows the ecosystem and the tools
• We stole: Kubernets, RabbitMQ, SQL,

Postgress, minio, etc.
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Conclusions: Modern Pythonic analysis in HEP is happening now
A confluence of scientific tools and scientists has lead to a

feature-complete Scikit-HEP in the last 5 years

Eduardo Rodrigues
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https://indico.cern.ch/event/613842/contributions/2591057/


Conclusions: Modern Pythonic analysis in HEP is happening now
Growing PyHEP ecosystem is enabling analysts in HEP to explore

and reduce the time to insight
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https://indico.cern.ch/event/1140031/

